ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NuScale E2 Center opens at RPI
The opening of an Energy Exploration (E2) Center at Rensselaer Polytechnic Institute in Troy, N.Y., was announced by NuScale Power Corporation on March 24. The training center will provide students from RPI’s School of Engineering an opportunity to gain a firsthand understanding of advanced nuclear technology and the role it will play in the global energy transition, as well as of the features and functionality of NuScale’s small modular reactor technology.
Learn more about NuScale E2 Centers here.
Changle Liu, Lei Li, Yu Zhou, Peng Zhang, Jun Song, Songtao Wu
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 610-615
Technical Note | doi.org/10.1080/15361055.2022.2162795
Articles are hosted by Taylor and Francis Online.
One of the goals of fusion blanket design is to explore the blanket material design to maintain the characteristics of the internal temperature field. This is because the characteristics of the temperature field have an important influence on the effectiveness of tritium release for the blanket. In this work, the influence of material design on temperature field characteristics is studied based on a multizone structure blanket model. It mainly focuses on the positions of the breeders, the multipliers, and the structural steel, including their material proportions in the blanket interior. It was found that the temperature field in the pure breeder region Li4SiO4 is relatively independent and has little influence on the adjacent regions because its location is closer to the first wall. The first beryllium zone only affects the adjacent regions and will not repeatedly affect the remote areas. The second beryllium zone and the first mixed-pebble zone of the Li/Be zone are mainly limited to the structural materials due to the sensitivity of the temperature limitation of 550°C. This work will have very important support and reference for future fusion blanket engineering.