ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS responds to “antiscientific” op-ed
The Hill recently published an opinion piece by Cindy Folkers and Amanda Nichols entitled “They won’t tell you these truths about nuclear energy.” Sadly, after the first sentence, their so-called truth veers into a diatribe of antiscientific fearmongering and misrepresentations.
Henri Weisen, Jari Varje, Paula Sirén, Zamir Ghani, JET Contributors
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 602-609
Rapid Communication | doi.org/10.1080/15361055.2022.2164145
Articles are hosted by Taylor and Francis Online.
Two related methods for inverting line-integrated measurements are presented in this research paper in the context of the recent deuterium-tritium experiments in the JET tokamak. Unlike traditional methods of tomography, these methods rely on making use of a family of model distributions defining a functional space within which a solution of the inversion problem is expected to exist. This is a stronger assumption than that underlying traditional methods of tomography and requires that suitable models for the expected distribution be available. In return, the methods offer computationally efficient and robust reconstructions. Regressive tomography, as applied to the data from the JET neutron cameras, involves calculating a set of 100 or more two-dimensional (2-D) neutron emission distributions in a representative variety of conditions using the ASCOT and AFSI Monte Carlo fast ion orbit and fusion reaction codes. The distributions are line integrated to represent synthetic measurements from the 19 channels of this two-camera system. An inversion matrix is then obtained by regressing the 2-D distributions corresponding to each of the voxels against these line integrals. The second method, direct regressive reconstruction, bypasses the calculation of line integrals altogether by regressing experimental camera data against calculated neutron emission distributions. This method does not require the cameras to be calibrated, not even relatively between channels. The inversion matrices obtained by any of the two methods can then be used to provide neutron emission profiles for which ASCOT/AFSI calculations are not available.