ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
In an international industry, regulators cross the border too
Since nuclear physics works the same in Ontario as it does in Tennessee, the industry has been trying to create a reactor that can be deployed on both sides of the border. Now, the Nuclear Regulatory Commission and the Canadian Nuclear Safety Commission have decided that some of their rulings can cross the border too.
Eric Lang, Chase N. Taylor, Nathan Madden, Trevor Marchhart, Charles Smith, Xing Wang, Jessica Krogstad, J. P. Allain
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 592-601
Technical Paper | doi.org/10.1080/15361055.2022.2164444
Articles are hosted by Taylor and Francis Online.
Tungsten is the material of choice for plasma-facing components in the divertor region of future nuclear fusion reactors. Exposure to low-energy helium ion irradiation results in microstructural changes as helium is trapped at defects in the tungsten matrix. High-temperature exposure results in the formation of helium bubbles in the subsurface. Dispersion-strengthened tungsten materials are tungsten-based materials with added transition metal carbides to alter the impurity distribution and grain structure. In this work, the thermal release of helium from dispersion-strengthened tungsten is investigated. After irradiation at 1073 K to a 1024 m−2 fluence, thermal desorption spectroscopy was performed to elucidate the helium trapping and desorption behavior. Post-desorption microscopy was performed to correlate the microstructural changes with helium release spectra. The amount of desorbed helium was highest in the 1.1 and 5 wt% alloys, and significantly lower in the 10 wt% alloys. Helium bubbles were observed in the pure tungsten and 1.1 wt% alloys within the tungsten grains. Correlating the composition with helium release spectra revealed the importance of tailoring grain size and oxide vacancy concentrations by varying the dispersoid content on the helium retention and release behavior. These first results of helium desorption from dispersion-strengthened tungsten indicate compositionally dependent retention and reveal the need to examine helium retention in advanced tungsten alloys under reactor-relevant exposure.