This paper studies electromagnetic (EM) loads during major disruptions and vertical displacement events by introducing a two-dimensional spatiotemporal plasma current attenuation filament profile derived from the DINA code. Three-dimensional geometry models of the HL-2M tokamak are established by ANSYS, including the plasma-facing components (PFCs), the vacuum vessel (VV), poloidal magnetic field/central solenoid magnetic field coils, and divertor. Eddy currents are induced with plasma current decay and flow into the PFC components. The interaction between eddy currents and magnetic fields generates enormous EM forces and torques. The halo current also flows into the VV and divertor components from the inner and outer target plates, the demo plate, and the cassette box. The halo current–induced EM loads are the most substantial forces in the inward radial and upward vertical forces for the VV and divertor. The simulation results provide a reference for the design and safety assessment of the magnetically confined tokamak HL-2M.