ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Idaho cleanup contractor funds local STEAM learning
The Idaho Environmental Coalition (IEC) has provided funding to 15 classrooms in southeastern Idaho to support local educators and encourage the next generation of workers to pursue technical careers, the Department of Energy’s Office of Environmental Management announced. The IEC, which is led by Amentum and includes North Wind Portage as a partner, was awarded a 10-year, $6.4 billion contract in 2021 to manage cleanup operation at the Idaho National Laboratory Site.
Jing Wu, Yajing Chen, Jian Liu, Pengcheng Guo, Lei Xue, Lieming Yao
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 578-591
Technical Paper | doi.org/10.1080/15361055.2022.2162793
Articles are hosted by Taylor and Francis Online.
This paper studies electromagnetic (EM) loads during major disruptions and vertical displacement events by introducing a two-dimensional spatiotemporal plasma current attenuation filament profile derived from the DINA code. Three-dimensional geometry models of the HL-2M tokamak are established by ANSYS, including the plasma-facing components (PFCs), the vacuum vessel (VV), poloidal magnetic field/central solenoid magnetic field coils, and divertor. Eddy currents are induced with plasma current decay and flow into the PFC components. The interaction between eddy currents and magnetic fields generates enormous EM forces and torques. The halo current also flows into the VV and divertor components from the inner and outer target plates, the demo plate, and the cassette box. The halo current–induced EM loads are the most substantial forces in the inward radial and upward vertical forces for the VV and divertor. The simulation results provide a reference for the design and safety assessment of the magnetically confined tokamak HL-2M.