ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Sumei Liu, Qigang Wu, Mingzhun Lei
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 567-577
Technical Paper | doi.org/10.1080/15361055.2022.2157185
Articles are hosted by Taylor and Francis Online.
A loss of vacuum accident (LOVA) occurs during in-vessel component failure and air ingress. The airflow characteristics of a LOVA are determined by many factors like initial pressure, location of a break, and size of a break and have a great impact on dust migration, which could cause a serious explosion with incoming air and H2. In this paper, a computational fluid dynamics method is adopted, and the k-ε Shear Stress Transport model for airflow and the Discrete Phase Model for dust are used to simulate a LOVA with the updated Chinese Fusion Engineering Test Reactor (CFETR) tokamak device. The effects of initial pressure, break size, and break location on airflow during the LOVA are discussed, and the effects of dust size, break size, and break location on dust migration during the LOVA are investigated as well. The results indicate that the initial pressure and size of a break have a greater impact on airflow of a LOVA than the location of the break and that both the dust size and the characteristics of the airflow have a greater impact on the distribution of the dust. A break located in the upper port has even more dust chaos. This research is the basis for the safety analysis of the CFETR device, and it provides a reference for subsequent studies on dust removal, mitigation of dust explosions, and radioactive substances.