ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
Pu Tu, Weichao Xie, Qian Chen, Chen Huang, Jinxia Zhu
Fusion Science and Technology | Volume 79 | Number 5 | July 2023 | Pages 553-566
Technical Paper | doi.org/10.1080/15361055.2022.2151821
Articles are hosted by Taylor and Francis Online.
Non-resonant excitation due to plasma inertia may be dominant in inducing internal kink (IK) instabilities. Poloidal rotation can effectively modify plasma inertia and cause non-resonant excitation to occur. An extended dispersion relation including poloidal rotation is established to study the IK mode and the fishbone (FB) mode. It is found that in rotating plasmas, even for a stable IK mode (i.e., the perturbed potential energy of background plasma δWc is positive) and in the absence of energetic particles (EPs), poloidal rotation can drive the IK mode via non-resonant excitation. Moreover, the IK mode is easy to be driven by poloidal rotation in weak magnetic shear plasmas. Similar to toroidal rotation, when poloidal rotation frequency exceeds a threshold, the FB mode can transform into a branch of a non-resonant mode. The real frequency of the mode, being independent of the precessional frequency of EPs, is just equal to the poloidal rotation frequency. Thus, the non-resonant mode is characterized by the long-lived mode (LLM) observed in toroidal rotating plasmas. The critical gradient of the poloidal rotation profile plays a crucial role in causing the resonant mode to evolve into a non-resonant one; for instance, only for a very peaked poloidal rotation profile can the FB mode transform into the LLM. In addition, the diamagnetic drift frequency of thermal ions can stabilize the FB and the IK modes.