ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Timothy R. Gosnell, James K. Hoffer
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 567-572
Technical Paper | doi.org/10.13182/FST04-A531
Articles are hosted by Taylor and Francis Online.
Estimates of the time-to-melt for cryogenic DT inertial fusion targets in the presence of thermal radiation are presented. This time is defined as that required for thermal radiation in a hypothetical reactor to raise the temperature of small polymer capsules containing solid DT by 1 K and to fully liquefy the contents. The time estimates are in turn based on estimates of the infrared absorption spectra of both solid DT and the polymer capsule material. Assuming typical target dimensions and rapid equilibration of the target temperature, the estimates show that the absorption of thermal radiation and subsequent heating of likely capsule materials will dominate the corresponding quantities of DT ice and thus that the former effect largely determines the time-to-melt of the target. Specific estimates are made for capsules fabricated from KaptonTM polyimide. Comparisons are also made for capsules coated with reflective metal coatings, and the potential benefit of these coatings is discussed.