ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Alexei Yu. Chirkov, Semion A. Tokarev
Fusion Science and Technology | Volume 79 | Number 4 | May 2023 | Pages 413-420
Technical Paper | doi.org/10.1080/15361055.2022.2135337
Articles are hosted by Taylor and Francis Online.
The formation of the spectrum of ions leaving the Z-pinch constriction during its compression is considered in the framework of the thermal mechanism corresponding to collisional regimes at high density. This mechanism refers to the heating of all ions due to compression without consideration of the electromagnetic acceleration of any selected group of ions. It is shown that such conditions can be implemented in relatively high-density regimes in which the product of precompression density and radius is n0a0 ≫ 1024 m–3. Neutron yield is analyzed. Possible parameters of a fusion reactor based on a high-density Z-pinch are estimated and found to be extremely high in terms of today’s technology.