ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
V. Badalassi, A. Sircar, J. M. Solberg, J. W. Bae, K. Borowiec, P. Huang, S. Smolentsev, E. Peterson
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 345-379
Technical Paper | doi.org/10.1080/15361055.2022.2151818
Articles are hosted by Taylor and Francis Online.
The Fusion Energy Reactor Models Integrator (FERMI) is an integrated simulation environment under development for the coupled simulation of the plasma, first wall, and blanket of fusion reactor designs. The FERMI goals are to shorten the overall design cycle while guaranteeing unprecedented accuracy, thus integrating fusion design activities, facilitating an optimal reactor design, and reducing development risks. These goals are achieved by coupling single-physics solvers into a multiphysics simulation environment (FERMI). The Integrated Plasma Simulator (IPS)–FASt TRANsport (IPS-FASTRAN) simulation framework is used for the following: plasma physics, MCNP/Shift codes for neutron and photon transport, OpenFoam for computational fluid dynamics and magnetohydrodynamics (MHD), HyPerComp Incompressible MHD solver for Arbitrary Geometry (HIMAG) for dual-coolant lead-lithium (DCLL) blankets, and DIABLO for structural mechanics simulations. These codes are coupled using the open-source library named precise Code Interaction Coupling Environment (preCICE). FERMI’s features are tested with the analysis of the liquid immersion blanket (LIB) [proposed in the Affordable Robust Compact (ARC)–class tokamak design], the DCLL blanket [proposed in the Fusion Pilot Plant (FPP) design], and other benchmark cases. The calculated figures of merit are the tritium breeding ratio, material activation, displacements per atom, shutdown dose rate, heat deposited in the vacuum vessel and blanket, temperature hot spots, and displacements caused by swelling and creep. A critical technical problem is multiphysics code coupling, which is tackled here, and the first three-dimensional (3D) simulations of the DCLL-FPP and LIB-ARC blankets are presented. To the authors’ knowledge, FERMI represents the first effort to perform 3D simulations of nuclear fusion first wall and blankets in a fully coupled multiphysics manner.