ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
D. B. Weisberg, J. Leuer, J. McClenaghan, J. H. Yu, W. Wehner, K. McLaughlin, T. Abrams, J. Barr, B. Grierson, B. Lyons, J. R. MacDonald, O. Meneghini, C. C. Petty, R. I. Pinsker, G. Sinclair, W. M. Solomon, T. Taylor, K. Thackston, D. Thomas, B. van Compernolle, M. VanZeeland, K. Zeller
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 320-344
Technical Paper | doi.org/10.1080/15361055.2022.2149210
Articles are hosted by Taylor and Francis Online.
A high-level design study for a new experimental tokamak shows that advances in fusion science and engineering can be leveraged to narrow the gaps in energy confinement and exhaust power handling that remain between present devices and a future fusion pilot plant (FPP). This potential new U.S. facility, an Exhaust and Confinement Integration Tokamak Experiment (EXCITE), will access an operational space close to the projected FPP performance regime via a compact, high-field, high-power-density approach that utilizes advanced tokamak scenarios and high-temperature superconductor magnets. Full-device optimization via system code calculations, physics-based core-edge modeling, plasma control simulations, and finite element structural and thermal analysis has converged on a T, MA, m, , D-D tokamak with strong plasma shaping, long-legged divertors, and 50 MW of auxiliary power. Such a device will match several absolute FPP parameters: plasma pressure, exhaust heat flux, and toroidal magnetic field. It will also narrow or close the gap in key dimensionless parameters: toroidal beta, bootstrap fraction, collisionality, and edge neutral opacity. Integrated neutron shielding preserves personnel access by limiting nuclear activation and maximizes experimental run time by reducing site radiation. In addition to design study results and optimization details, parameter sensitivities and uncertainties are also discussed.