ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
D. B. Weisberg, J. Leuer, J. McClenaghan, J. H. Yu, W. Wehner, K. McLaughlin, T. Abrams, J. Barr, B. Grierson, B. Lyons, J. R. MacDonald, O. Meneghini, C. C. Petty, R. I. Pinsker, G. Sinclair, W. M. Solomon, T. Taylor, K. Thackston, D. Thomas, B. van Compernolle, M. VanZeeland, K. Zeller
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 320-344
Technical Paper | doi.org/10.1080/15361055.2022.2149210
Articles are hosted by Taylor and Francis Online.
A high-level design study for a new experimental tokamak shows that advances in fusion science and engineering can be leveraged to narrow the gaps in energy confinement and exhaust power handling that remain between present devices and a future fusion pilot plant (FPP). This potential new U.S. facility, an Exhaust and Confinement Integration Tokamak Experiment (EXCITE), will access an operational space close to the projected FPP performance regime via a compact, high-field, high-power-density approach that utilizes advanced tokamak scenarios and high-temperature superconductor magnets. Full-device optimization via system code calculations, physics-based core-edge modeling, plasma control simulations, and finite element structural and thermal analysis has converged on a T, MA, m, , D-D tokamak with strong plasma shaping, long-legged divertors, and 50 MW of auxiliary power. Such a device will match several absolute FPP parameters: plasma pressure, exhaust heat flux, and toroidal magnetic field. It will also narrow or close the gap in key dimensionless parameters: toroidal beta, bootstrap fraction, collisionality, and edge neutral opacity. Integrated neutron shielding preserves personnel access by limiting nuclear activation and maximizes experimental run time by reducing site radiation. In addition to design study results and optimization details, parameter sensitivities and uncertainties are also discussed.