ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
M. Harb, D. Leichtle, B.-Y. Kim, J.-P. Martins, J. G. van der Laan, J. Bergman, E. Polunovskiy, A. Serikov
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 305-319
Technical Paper | doi.org/10.1080/15361055.2022.2109368
Articles are hosted by Taylor and Francis Online.
One of the advances in the test blanket module program within the ITER project in the last few years concerned the evolution of the pipe forest (PF) and bioshield plug (BP) designs. In support of the design phase, nuclear analyses to assess several responses in the fusion neutronics environment inside the port interspace (PI) with the existence of the evolved PF and BP are deemed essential. Nuclear analyses were commenced using the new PF and BP with developing the neutronics models and performing preliminary assessment of the radiation fields and shutdown dose rate (SDDR) in the PI. In this paper, the results of a full suite of nuclear analyses are discussed, which covers more configurations and radiation sources, in two plasma operational modes: on and off. For the plasma-on mode, different shielding options were examined. The results show a clear benefit of combining the installation of shielding panels on the PF enclosure with those in the BP “dogleg,” through which the pipes penetrate to the port cell area. For the plasma-off mode, the SDDR was assessed from different sources: activated components and residual LiPb layers in pipes after drainage. As maintenance operations are foreseen during the lifetime of the facility, the SDDR was also assessed for access conditions, open BP doors, and transport conditions, with PF extracted in the gallery.