Radiation field analyses of the fusion reactor are vital to machine design and personal/environmental irradiation protection. Owing to the complicated and toroidal symmetry of fusion reactors, these nuclear analyses have been performed based on a sector model with reflecting boundary conditions. However, not all sections of a fusion reactor are symmetrical in the toroidal direction, particularly the neutron flow channels introduced by auxiliary systems from which particles can leak directly from the plasma. Hence, the reflecting boundary conditions cannot accurately describe the particle transport. Consequently, radiation field analyses based on a full-sector model must be performed to verify the results obtained. In this regard, the neutronics model of CFETR has been built in 360 deg. Meanwhile, the development of the automatic geometry conversion platform cosVMPT has enabled an entire 360-deg model of the CFETR to be established. The model contains all primary components and the outer house building. Sixteen upper/lower ports and six equatorial ports are included, in which two of them are slanted for neutral beam injection, whereas the other ports are filled with a shielding block. The on-the-fly (OTF) global variance reduction method is utilized to accelerate neutron/photon coupling transport. The results show that cosVMPT and the OTF method are reliable, and that the obtained neutron/photon flux is asymmetric outside the main machine. The computational results of the 360-deg model are compared with those of the sector model such that the application scope of simplifying the modeling and calculation using the sector model can be further confirmed.