ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Qiuran Wu, Peng Lu, Hua Du, Yu Zheng, Songlin Liu
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 274-283
Technical Paper | doi.org/10.1080/15361055.2022.2120304
Articles are hosted by Taylor and Francis Online.
Radiation field analyses of the fusion reactor are vital to machine design and personal/environmental irradiation protection. Owing to the complicated and toroidal symmetry of fusion reactors, these nuclear analyses have been performed based on a sector model with reflecting boundary conditions. However, not all sections of a fusion reactor are symmetrical in the toroidal direction, particularly the neutron flow channels introduced by auxiliary systems from which particles can leak directly from the plasma. Hence, the reflecting boundary conditions cannot accurately describe the particle transport. Consequently, radiation field analyses based on a full-sector model must be performed to verify the results obtained. In this regard, the neutronics model of CFETR has been built in 360 deg. Meanwhile, the development of the automatic geometry conversion platform cosVMPT has enabled an entire 360-deg model of the CFETR to be established. The model contains all primary components and the outer house building. Sixteen upper/lower ports and six equatorial ports are included, in which two of them are slanted for neutral beam injection, whereas the other ports are filled with a shielding block. The on-the-fly (OTF) global variance reduction method is utilized to accelerate neutron/photon coupling transport. The results show that cosVMPT and the OTF method are reliable, and that the obtained neutron/photon flux is asymmetric outside the main machine. The computational results of the 360-deg model are compared with those of the sector model such that the application scope of simplifying the modeling and calculation using the sector model can be further confirmed.