ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
S. Smolentsev
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 251-273
Technical Paper | doi.org/10.1080/15361055.2022.2116905
Articles are hosted by Taylor and Francis Online.
The successful development of robust breeding blanket systems will strongly rely on computational tools for predicting the complex behavior of the electrically conducting liquid-metal (LM) breeder flowing in the complex-shaped blanket ducts in the presence of a strong plasma-confining magnetic field, volumetric heating, and tritium generation. Associated transport processes involve magnetohydrodynamic (MHD) flows, heat transfer, corrosion, and tritium transport. This paper is an overview of past and present efforts in the development, application, and verification and validation (V&V) of such computational tools. As a result of the ongoing campaign on V&V of computer codes for LM blankets, the international fusion community has identified several candidates that promise to become real blanket design and analysis tools in the near future. Among them are HIMAG, MHD-UCAS, COMSOL Multiphysics, ANSYS FLUENT, ANSYS CFX, and OpenFOAM. The progress, over the last decade, in the application of such codes in blanket studies is tremendous. This is illustrated with two examples for a dual-coolant lead-lithium (DCLL) blanket: (1) integrated computer modeling for the recently designed DCLL blanket in the United States and (2) application of the code MHD-UCAS to the analysis of PbLi flows and heat transfer in a generic DCLL blanket prototype at high Hartmann (Ha ~ 104) and Grashof numbers (Gr ~ 1012). This paper also presents an approach to the development of a new integrated computational tool called the virtual dual-coolant lead-lithium (VDCLL) blanket, which elaborates the existing U.S. MHD code HIMAG.