ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
H. B. Xu, R. Guo, Z. Cao, M. Li, X. L. Liu, B. Zhang, HL-2A Team
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 162-167
Technical Paper | doi.org/10.1080/15361055.2022.2131162
Articles are hosted by Taylor and Francis Online.
Pellet injection (PI) is the preferred fueling method in the future fusion reactor. It is particularly important to study the flow field characteristics of the frozen fuel extrusion process for the future steady operation of the pellet injector. In order to study the influence of groove depth on extrusion flux and conveying capacity, the flow field characteristics of a repetitive pellet injector with a single-screw extruder in the China Fusion Engineering Test Reactor (CFETR) was numerically simulated with POLYFLOW software. Thus, information about pressure field, viscous heating, and velocity field distribution was obtained. The results indicate that to a certain extent, increasing the groove depth (while maintaining the gaps between the screw and extrusion cylinder) is beneficial for the conveying capacity and pressure building capacity. The results of the numerical simulations show that at a screw speed of 120 rpm, screw outer diameter of 20 mm, screw length of 230 mm, screw groove depth of 6 mm, and screw prism gap of 0.3 mm, solid hydrogen can be stably extruded, and the velocity of the extruded ice at the nozzle is 0.15 m/s, which meets the design requirement of the CFETR PI system. These results also provide good references for structure design and performance optimization of the CFETR pellet injector.