ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2023 ANS Winter Conference and Expo
November 12–15, 2023
Washington, D.C.|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
November 2023
Nuclear Technology
October 2023
Fusion Science and Technology
Latest News
NCSU’s advanced research reactor study to be funded by state
North Carolina’s fiscal year 2024 budget for the state has allocated $3 million for North Carolina State University, in Raleigh, to conduct a study to assess the feasibility for the establishment of an advanced nuclear research reactor.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 135-150
Technical Paper | doi.org/10.1080/15361055.2022.2107311
Articles are hosted by Taylor and Francis Online.
Numerical calculations are conducted for liquid-metal magnetohydrodynamic flows through a circular pipe with an electrically conducting wall in both the magnetic field inlet region and the outlet region. Conservation equations of fluid mass and of fluid momentum and the Poisson equation for electrical potential are solved numerically. The calculations are performed by a cylindrical coordinate system using a staggered grid in order to obtain numerically stable solutions, covering Hartmann numbers up to the order of 10 000. As to the loss coefficient ζ for the pressure drop, the value of ζ/(Ha2/Re) does not depend on the Ha number, the Re number, and the wall conductance ratio very much for both the magnetic field inlet section and the outlet section. The value of ζ/(Ha2/Re) changes mainly with the gradient of the applied magnetic field for both the magnetic field inlet section and the outlet section.