ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 135-150
Technical Paper | doi.org/10.1080/15361055.2022.2107311
Articles are hosted by Taylor and Francis Online.
Numerical calculations are conducted for liquid-metal magnetohydrodynamic flows through a circular pipe with an electrically conducting wall in both the magnetic field inlet region and the outlet region. Conservation equations of fluid mass and of fluid momentum and the Poisson equation for electrical potential are solved numerically. The calculations are performed by a cylindrical coordinate system using a staggered grid in order to obtain numerically stable solutions, covering Hartmann numbers up to the order of 10 000. As to the loss coefficient ζ for the pressure drop, the value of ζ/(Ha2/Re) does not depend on the Ha number, the Re number, and the wall conductance ratio very much for both the magnetic field inlet section and the outlet section. The value of ζ/(Ha2/Re) changes mainly with the gradient of the applied magnetic field for both the magnetic field inlet section and the outlet section.