ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 135-150
Technical Paper | doi.org/10.1080/15361055.2022.2107311
Articles are hosted by Taylor and Francis Online.
Numerical calculations are conducted for liquid-metal magnetohydrodynamic flows through a circular pipe with an electrically conducting wall in both the magnetic field inlet region and the outlet region. Conservation equations of fluid mass and of fluid momentum and the Poisson equation for electrical potential are solved numerically. The calculations are performed by a cylindrical coordinate system using a staggered grid in order to obtain numerically stable solutions, covering Hartmann numbers up to the order of 10 000. As to the loss coefficient ζ for the pressure drop, the value of ζ/(Ha2/Re) does not depend on the Ha number, the Re number, and the wall conductance ratio very much for both the magnetic field inlet section and the outlet section. The value of ζ/(Ha2/Re) changes mainly with the gradient of the applied magnetic field for both the magnetic field inlet section and the outlet section.