ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Y. E. Titarenko, S. S. Ananev, V. F. Batyaev, V. I. Belousov, V. Y. Blandinskiy, K. G. Chernov, V. D. Davidenko, A. A. Dudnikov, I. I. Dyachkov, M. V. Ioannisian, A. A. Kovalishin, V. I. Khripunov, B. V. Kuteev, V. O. Legostaev, M. R. Malkov, K. V. Pavlov, A. Y. Titarenko, M. A. Zhigulina, V. M. Zhivun, Y. A. Kashchuk, S. A. Meshchaninov, S. Y. Obudovsky, A. Y. Stankovskiy, A. Y. Konobeyev
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 117-134
Technical Paper | doi.org/10.1080/15361055.2022.2121525
Articles are hosted by Taylor and Francis Online.
This paper presents the results of the experimental determination and computational simulation of the ambient dose equivalent rate for a metallic thorium cylindrical miniblock and the (n,2n), (n,f), and (n,γ) reaction rates in a thin 232Th metal foil irradiated with neutrons of the NG-24M generator spectrum. The ambient dose equivalent rate was determined by dosimeters-radiometers. The reaction rates were determined by the activation method using Ge spectrometers without destroying the irradiated samples. Computational simulations of ambient dose equivalent and reaction rates were performed, respectively, using the radiation transport codes PHITS, MCNP5, and KIR2, which use various nuclear data libraries: JEFF-3.2 and -3.3; JENDL4.0; ENDF/B-VII.0, -VII.1, and -VIII.0; ROSFOND; FENDL; and TENDL. The authors give an estimate of the 232U/233U relative accumulation upon natural thorium irradiation in a fusion facility blanket with defined neutron spectrum. The nonirradiated and irradiated thorium nuclide composition change simulation and visualization were performed using analytical solutions of an ordinary system of homogeneous linear differential equations describing nuclide transmutations.