ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Y. E. Titarenko, S. S. Ananev, V. F. Batyaev, V. I. Belousov, V. Y. Blandinskiy, K. G. Chernov, V. D. Davidenko, A. A. Dudnikov, I. I. Dyachkov, M. V. Ioannisian, A. A. Kovalishin, V. I. Khripunov, B. V. Kuteev, V. O. Legostaev, M. R. Malkov, K. V. Pavlov, A. Y. Titarenko, M. A. Zhigulina, V. M. Zhivun, Y. A. Kashchuk, S. A. Meshchaninov, S. Y. Obudovsky, A. Y. Stankovskiy, A. Y. Konobeyev
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 117-134
Technical Paper | doi.org/10.1080/15361055.2022.2121525
Articles are hosted by Taylor and Francis Online.
This paper presents the results of the experimental determination and computational simulation of the ambient dose equivalent rate for a metallic thorium cylindrical miniblock and the (n,2n), (n,f), and (n,γ) reaction rates in a thin 232Th metal foil irradiated with neutrons of the NG-24M generator spectrum. The ambient dose equivalent rate was determined by dosimeters-radiometers. The reaction rates were determined by the activation method using Ge spectrometers without destroying the irradiated samples. Computational simulations of ambient dose equivalent and reaction rates were performed, respectively, using the radiation transport codes PHITS, MCNP5, and KIR2, which use various nuclear data libraries: JEFF-3.2 and -3.3; JENDL4.0; ENDF/B-VII.0, -VII.1, and -VIII.0; ROSFOND; FENDL; and TENDL. The authors give an estimate of the 232U/233U relative accumulation upon natural thorium irradiation in a fusion facility blanket with defined neutron spectrum. The nonirradiated and irradiated thorium nuclide composition change simulation and visualization were performed using analytical solutions of an ordinary system of homogeneous linear differential equations describing nuclide transmutations.