ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Dustin Olson, Kirk Shanahan, Binod Rai, Dale Hitchcock, Catherine Housley, George Larsen
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 95-103
Technical Paper | doi.org/10.1080/15361055.2022.2116224
Articles are hosted by Taylor and Francis Online.
The study of tritium aging effects on materials requires a significant time commitment as a consequence of its 12.3-year half-life, making developmental studies prohibitively difficult and expensive. However, detailed knowledge of long-term aging effects is critical to the development of structural and storage materials for future fusion reactor technologies. As a result, multiple approaches to simulated aging effects have been investigated. We report a method of simulated tritium aging achieved though the incorporation of trapped gases via high-energy ball milling of LaNi4.25Al0.75 alloy storage material. Experimental results verify the presence of trapped gases by a combination of temperature programmed desorption and LECO chemical analysis. Following gas incorporation, we find that many of the degraded hydrogen sorption properties found in aged storage materials are reproduced by the ball milled powders.