ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Dustin Olson, Kirk Shanahan, Binod Rai, Dale Hitchcock, Catherine Housley, George Larsen
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 95-103
Technical Paper | doi.org/10.1080/15361055.2022.2116224
Articles are hosted by Taylor and Francis Online.
The study of tritium aging effects on materials requires a significant time commitment as a consequence of its 12.3-year half-life, making developmental studies prohibitively difficult and expensive. However, detailed knowledge of long-term aging effects is critical to the development of structural and storage materials for future fusion reactor technologies. As a result, multiple approaches to simulated aging effects have been investigated. We report a method of simulated tritium aging achieved though the incorporation of trapped gases via high-energy ball milling of LaNi4.25Al0.75 alloy storage material. Experimental results verify the presence of trapped gases by a combination of temperature programmed desorption and LECO chemical analysis. Following gas incorporation, we find that many of the degraded hydrogen sorption properties found in aged storage materials are reproduced by the ball milled powders.