ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hiroshi Tamai, Shinichi Ishida, Gen-Ichi Kurita, Hiroshi Shirai, Katsuhiko Tsuchiya, Shinji Sakurai, Makoto Matsukawa, Akira Sakasai
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 521-528
Technical Paper | doi.org/10.13182/FST04-A527
Articles are hosted by Taylor and Francis Online.
A 1.5-dimensional time-dependent transport analysis has been carried out to investigate steady-state operation scenarios with a central current hole by off-axis current drive schemes consistent with a high bootstrap current fraction for the JT-60SC large superconducting tokamak. A steady-state operation scenario with HHy2 = 1.4 and N = 3.7 has been obtained at Ip = 1.5 MA, Bt = 2 T, and q95 = 5, where noninductive currents are developed during the discharge to form a current hole with beam-driven currents by tangential off-axis beams in combination with bootstrap currents by additional on-axis perpendicular beams. The bootstrap fraction increases up to ~75% of the plasma current, and the current hole region is enlarged up to ~30% of the minor radius at 35 s from the discharge initiation. The current hole is confirmed to be sustained afterward for a long duration of 60 s. The present transport simulation shows that heating equipment designed for JT-60SC is capable of forming and sustaining the current hole only by using off-axis beam-driven currents and bootstrap currents. The stability analysis shows that the beta limit with the conducting wall can be ~N = 4.5, which is substantially above the no-wall ideal magnetohydrodynamic limit.