ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Hiroshi Tamai, Shinichi Ishida, Gen-Ichi Kurita, Hiroshi Shirai, Katsuhiko Tsuchiya, Shinji Sakurai, Makoto Matsukawa, Akira Sakasai
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 521-528
Technical Paper | doi.org/10.13182/FST04-A527
Articles are hosted by Taylor and Francis Online.
A 1.5-dimensional time-dependent transport analysis has been carried out to investigate steady-state operation scenarios with a central current hole by off-axis current drive schemes consistent with a high bootstrap current fraction for the JT-60SC large superconducting tokamak. A steady-state operation scenario with HHy2 = 1.4 and N = 3.7 has been obtained at Ip = 1.5 MA, Bt = 2 T, and q95 = 5, where noninductive currents are developed during the discharge to form a current hole with beam-driven currents by tangential off-axis beams in combination with bootstrap currents by additional on-axis perpendicular beams. The bootstrap fraction increases up to ~75% of the plasma current, and the current hole region is enlarged up to ~30% of the minor radius at 35 s from the discharge initiation. The current hole is confirmed to be sustained afterward for a long duration of 60 s. The present transport simulation shows that heating equipment designed for JT-60SC is capable of forming and sustaining the current hole only by using off-axis beam-driven currents and bootstrap currents. The stability analysis shows that the beta limit with the conducting wall can be ~N = 4.5, which is substantially above the no-wall ideal magnetohydrodynamic limit.