ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Shutaro Takeda, Satoshi Konishi
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 69-76
Technical Paper | doi.org/10.1080/15361055.2022.2078137
Articles are hosted by Taylor and Francis Online.
It is a widespread view in the fusion community that steady-state, water-cooled fusion power plants can utilize the power generation systems of conventional pressurized water reactor (PWR) fission plants as is. However, what would happen to a fusion power plant in the case of plasma disruption? The authors constructed a dynamic simulation model of a water-cooled ceramic breeder blanket fusion power plant model on Modelica language [300.0-MW(electric) electrical output/1138-MW(thermal) fusion output] and evaluated the applicability of a PWR power generation system. Simulation results suggest that while the PWR system would function as intended during steady-state operation, the conventional system may not be able to cope with a sudden loss of energy influx in the event of plasma disruption without modification: The PWR system’s steam generator experienced a water overflow in less than 150 s from the plasma disruption.