ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Shutaro Takeda, Satoshi Konishi
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 69-76
Technical Paper | doi.org/10.1080/15361055.2022.2078137
Articles are hosted by Taylor and Francis Online.
It is a widespread view in the fusion community that steady-state, water-cooled fusion power plants can utilize the power generation systems of conventional pressurized water reactor (PWR) fission plants as is. However, what would happen to a fusion power plant in the case of plasma disruption? The authors constructed a dynamic simulation model of a water-cooled ceramic breeder blanket fusion power plant model on Modelica language [300.0-MW(electric) electrical output/1138-MW(thermal) fusion output] and evaluated the applicability of a PWR power generation system. Simulation results suggest that while the PWR system would function as intended during steady-state operation, the conventional system may not be able to cope with a sudden loss of energy influx in the event of plasma disruption without modification: The PWR system’s steam generator experienced a water overflow in less than 150 s from the plasma disruption.