ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Robotics milestone reached at Sellafield
Sellafield Ltd. and AtkinsRéalis have successfully operated a robotic dog from a remote location in what might be the first time such an operation has happened at a nuclear licensed site, according to the companies in a March 18 press release.
H. B. Flynn, George Larsen
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 60-68
Technical Paper | doi.org/10.1080/15361055.2022.2115833
Articles are hosted by Taylor and Francis Online.
Developing a Fusion Pilot Plant (FPP) design that minimizes risks due to tritium in-process inventory (IPI) is an important concern for the operation of commercial devices. This becomes even more of concern since an FPP will be breeding more tritium than is burned in the reactor for sustainability. The IPI is the tritium moving through the system that is not in the storage and delivery subsystem. A process model that solves time-dependent differential equations based on processing times was used to investigate the reduction of the IPI of a potential fuel cycle design. The impact of new and more efficient technologies such as direct internal recycling (DIR), metal foil pumps, continuous pumping, improved isotope separation, and hydrogen separating continuous pumps on IPI was investigated by adjusting subsystem processing times and material flow streams. It was shown that any of the insertions of DIR studied in this paper caused a reduction in the total IPI of the system and proved to be the optimal way to reduce the IPI in the system. Fuel cycle modifications near the torus, such as a coupled DIR and improved pumping systems, produced the largest reductions in tritium inventory.