ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
H. B. Flynn, George Larsen
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 60-68
Technical Paper | doi.org/10.1080/15361055.2022.2115833
Articles are hosted by Taylor and Francis Online.
Developing a Fusion Pilot Plant (FPP) design that minimizes risks due to tritium in-process inventory (IPI) is an important concern for the operation of commercial devices. This becomes even more of concern since an FPP will be breeding more tritium than is burned in the reactor for sustainability. The IPI is the tritium moving through the system that is not in the storage and delivery subsystem. A process model that solves time-dependent differential equations based on processing times was used to investigate the reduction of the IPI of a potential fuel cycle design. The impact of new and more efficient technologies such as direct internal recycling (DIR), metal foil pumps, continuous pumping, improved isotope separation, and hydrogen separating continuous pumps on IPI was investigated by adjusting subsystem processing times and material flow streams. It was shown that any of the insertions of DIR studied in this paper caused a reduction in the total IPI of the system and proved to be the optimal way to reduce the IPI in the system. Fuel cycle modifications near the torus, such as a coupled DIR and improved pumping systems, produced the largest reductions in tritium inventory.