ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
G. Sinclair, T. Abrams, L. Holland
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 46-59
Technical Paper | doi.org/10.1080/15361055.2022.2099506
Articles are hosted by Taylor and Francis Online.
Operating with hot tokamak plasma-facing components will be essential in fusion reactors to maximize the thermal efficiency of the blanket. The SOLPS-ITER edge plasma code package and the DIVIMP Monte Carlo impurity tracking code were used in tandem to simulate the effect of active wall heating on impurity sourcing and transport in a DIII-D–size tokamak. The SOLPS-ITER plasma background was generated based on a previous DIII-D discharge and includes the effect of particle drifts. DIVIMP simulations found that actively heating the lower divertor (versus the divertor shelf or the entire wall) was the most efficient way to minimize gross erosion and core impurity influx at temperatures above 1000 K. Replacing the graphite wall with a silicon carbide (SiC) wall yielded a 5 to 20× decrease in the estimated gross erosion rate of carbon, with a maximum decrease observed at a lower divertor temperature of 800 K. Gross erosion of Si from SiC was estimated to be almost 100× lower than that of C from SiC, due primarily to the low impact energy of incident D plasma on the divertor targets. The core impurity influx for SiC walls is predicted to be lower than that with graphite walls, but eroded Si ions appear to migrate preferentially (versus C) to the core due to a more peaked erosion profile closer to the strike points where the ion temperature gradient force drives particles upstream. These predictive simulations suggest that active heating of the plasma-facing wall may both lower wall erosion and improve core performance relative to the “warm” walls of current devices that are typically only heated via plasma contact. Relative reductions in gross erosion and upstream accumulation by using SiC instead of graphite as the wall material strengthen the argument for upgrades to current graphite-clad machines and continued development of SiC first-wall and blanket concepts.