ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Shawn Zamperini, T. Abrams, J. H. Nichols, J. D. Elder, J. D. Duran, P. C. Stangeby, D. C. Donovan, D. L. Rudakov, A. Wingen, C. Crowe
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 36-45
Technical Paper | doi.org/10.1080/15361055.2022.2082791
Articles are hosted by Taylor and Francis Online.
A novel multicode workflow to interpret collector probe deposition patterns in DIII-D has been developed. The components of the workflow consist of a detailed computer-aided-design file of the vessel wall and the scrape-off-layer (SOL) codes MAFOT, OSM, DIVIMP, and 3DLIM. A special-purpose toolkit enables passing the output of these codes among each other to provide a full-SOL picture of impurity transport. A demonstration of the workflow is described to support evidence of near-SOL tungsten parallel accumulation during trace W impurity experiments on DIII-D. Iteration between simulated deposition patterns in 3DLIM and DIVIMP predicts a region of elevated W density near the separatrix about halfway between the outboard midplane and the top of the plasma. This workflow will be used to better interpret collector probe experiments on DIII-D.