ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
M. Harb, A. Davis, P. P. H. Wilson
Fusion Science and Technology | Volume 79 | Number 1 | January 2023 | Pages 1-12
Technical Paper | doi.org/10.1080/15361055.2022.2115831
Articles are hosted by Taylor and Francis Online.
In fusion energy systems, part of the design effort is dedicated to the assessment of the shutdown dose rate (SDR) due to the decay photons that will be emitted from activated components. Monte Carlo transport codes are often used to obtain the neutron flux distribution in the problem domain. The neutron flux distribution is used in the rigorous 2-step (R2S) workflow to obtain the photon emission density distribution of decaying radionuclides. The photon emission density is then used as an input for a dedicated photon transport step to calculate the SDR. In this paper, the uncertainty of the decay gamma source due to the uncertainty of the neutron flux distribution in the R2S workflow is investigated. A scheme is developed to estimate the uncertainty of the decay gamma source, building on the concept of groupwise transmutation and using standard error propagation techniques. The applicability of the newly developed scheme is then demonstrated on one of the conceptual designs of the fusion nuclear science facility.