ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
F. Romanelli, A. Coletti, C. Gormezano, F. Lucci, A. Pizzuto, G. B. Righetti, The FTU Group, The ECRH Group
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 483-511
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A526
Articles are hosted by Taylor and Francis Online.
A conceptual study is presented for a substantial upgrade of the Frascati Tokamak Upgrade (FTU) up to B = 8 T, I = 6 MA, and R [approximately equal to] 1.3 m to study burning plasma (BP) issues in deuterium plasmas operating up to an equivalent DT gain close to Q = 2 in the ELMy H-mode and to Q = 5 with an internal transport barrier (ITB). The effect of alpha particles is simulated by ~1 MeV fast 3He minority heating produced by ion cyclotron resonance heating (20 MW). Thanks to the high-density values ([approximately equal to]4 × 1020 m-3), the FT3 plasmas are characterized by short electron-ion equipartition time (60 ms in the ELMy H-mode scenario) and slowing-down time (44 ms), with respect to the energy confinement time of ~340 ms, a feature characteristic of BP experiments but not always satisfied with present tokamak devices. Advanced scenarios at 5 T with fully noninductive current drive can be investigated with a steady-state current density profile achieved in <5 s. The aim of FT3 is to prepare ITER operation and to provide a test bed for the development of the ITER auxiliary system and diagnostics. Elements of the scientific program are as follows: the investigation of energetic particle collective effects, optimization of H-mode scenarios, development of improved H-mode scenarios and scenarios with ITBs, magnetohydrodynamic and transport studies in ITER-relevant conditions, and study of edge plasma dynamics. FT3 can use all the existing facilities available in Frascati and could be constructed in ~5 yr.