ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
B. Esposito, P. Buratti, S. Cirant, M. Leigheb, G. Bracco, L. Carraro, V. Cocilovo, L. Gabellieri, F. Gandini, E. Giovannozzi, C. Gormezano, A. Jacchia, E. Lazzaro, F. de Luca, M. Marinucci, E. Minardi, S. Nowak, D. Pacella, L. Panaccione, M. Romanelli, C. Sozzi, O. Tudisco
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 370-386
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A520
Articles are hosted by Taylor and Francis Online.
Transport studies are presented in this chapter. Global scaling studies have been performed using several transport codes. Ohmic plasmas are found to follow the ITER97 L-mode scaling. Transport coefficients are discussed for improved confinement scenarios achieved in the Frascati Tokamak Upgrade (FTU): the repetitive pellet enhanced plasma mode, showing neoclassical confinement with H-factors up to 1.6, and the electron internal transport barriers (ITBs) with large transport barriers and H-factors up to 1.3. Heat transport models have been tested using electron cyclotron resonance heating (ECRH), steady or modulated, as a probe. The electron temperature stiffness observed in the main bulk of steady FTU plasmas can be interpreted both with a critical gradient transport model and with a model based on the existence of canonical profiles. ECRH has also been used to benefit from the improved confinement generally associated with low or negative magnetic shear, and large electron temperatures have been achieved in these conditions. Profile resiliency is observed so that heat transport is not consistent with a constant thermal diffusivity. Experimental optimization is discussed together with the analysis of transport coefficients. Thorough discussions of impurity transport are given, both for intrinsic and injected (from laser blow-off) impurities. Code simulation and experimental data are compared for a series of FTU experiments focusing on the improved confinement modes (pellets and ITBs). A moderate inward pinch velocity is generally required to reproduce the data.