ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
P. Buratti, A. Airoldi, F. Alladio, S. V. Annibaldi, A. Bruschi, S. Cirant, R. M. Coelho, F. Gandini, E. Giovannozzi, E. Lazzaro, P. Micozzi, S. Nowak, F. Porcelli, G. Ramponi, P. Smeulders, O. Tudisco
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 350-369
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A519
Articles are hosted by Taylor and Francis Online.
The main magnetohydrodynamic (MHD) activities affecting the Frascati Tokamak Upgrade (FTU) high-field plasmas with limiter configuration are sawtooth relaxations and tearing modes.The period of sawtooth relaxations can be increased in FTU both by electron heating and by pellet particle deposition near the sawtooth inversion radius; both methods lead to full stabilization in proper conditions. The sawtooth period can be shortened as well by central heating.The influence of localized electron cyclotron resonance heating (ECRH) on the stability of m = 2 tearing modes has been studied in FTU by means of radial and power scans. Heating between the plasma center and the island location increases the island size, while heating at the island location produces mode stabilization if ECRH power exceeds a threshold value. These sawtooth and tearing mode studies show that some control of both phenomena can be achieved.Double-tearing modes in the form of regular, sawtooth-like relaxations have been observed in discharges with reversed magnetic shear. The development of these instabilities is particularly interesting in FTU as it happens in the absence of injected momentum.Long-lived m = 1 island structures are frequently observed following pellet deposition near the inversion radius; particle accumulation around the O-point enhances diagnostic sensitivity, thus allowing fine studies of island dynamics.MHD spectroscopy has revealed the existence of coherent waves at frequencies well above the drift-tearing range in thermal plasmas. In addition, broadband turbulence has been observed both in ohmic and in radio-frequency-heated plasmas. The amplitude of turbulent fluctuations increases with heating power and is anticorrelated with the neutron yield.