ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
P. Buratti, A. Airoldi, F. Alladio, S. V. Annibaldi, A. Bruschi, S. Cirant, R. M. Coelho, F. Gandini, E. Giovannozzi, E. Lazzaro, P. Micozzi, S. Nowak, F. Porcelli, G. Ramponi, P. Smeulders, O. Tudisco
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 350-369
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A519
Articles are hosted by Taylor and Francis Online.
The main magnetohydrodynamic (MHD) activities affecting the Frascati Tokamak Upgrade (FTU) high-field plasmas with limiter configuration are sawtooth relaxations and tearing modes.The period of sawtooth relaxations can be increased in FTU both by electron heating and by pellet particle deposition near the sawtooth inversion radius; both methods lead to full stabilization in proper conditions. The sawtooth period can be shortened as well by central heating.The influence of localized electron cyclotron resonance heating (ECRH) on the stability of m = 2 tearing modes has been studied in FTU by means of radial and power scans. Heating between the plasma center and the island location increases the island size, while heating at the island location produces mode stabilization if ECRH power exceeds a threshold value. These sawtooth and tearing mode studies show that some control of both phenomena can be achieved.Double-tearing modes in the form of regular, sawtooth-like relaxations have been observed in discharges with reversed magnetic shear. The development of these instabilities is particularly interesting in FTU as it happens in the absence of injected momentum.Long-lived m = 1 island structures are frequently observed following pellet deposition near the inversion radius; particle accumulation around the O-point enhances diagnostic sensitivity, thus allowing fine studies of island dynamics.MHD spectroscopy has revealed the existence of coherent waves at frequencies well above the drift-tearing range in thermal plasmas. In addition, broadband turbulence has been observed both in ohmic and in radio-frequency-heated plasmas. The amplitude of turbulent fluctuations increases with heating power and is anticorrelated with the neutron yield.