ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Haozhe Qiu, Kun Lu, Xiaojun Ni, Jianghua Wei, Songbo Han
Fusion Science and Technology | Volume 78 | Number 8 | November 2022 | Pages 676-682
Technical Paper | doi.org/10.1080/15361055.2022.2103312
Articles are hosted by Taylor and Francis Online.
The vacuum vessel is the core component of the Chinese Fusion Engineering Testing Reactor (CFETR); its main function is to remove nuclear heating, provide safety shielding, and maintain a high-quality vacuum environment. Therefore, the safety of the vacuum vessel is of great significance to the CFETR, and examining its dynamic performance is necessary. However, the conventional finite element method takes too long to perform the dynamic analysis of the vacuum vessel, which greatly reduces the efficiency of the design and analysis. Based on the modal synthesis method, this study uses ANSYS software to establish a substructure model of the CFETR vacuum vessel. A modal analysis and harmonic response analysis are conducted, and their results are compared with those of the conventional finite element model. The results show that the substructure model not only has the same accuracy as conventional finite element models, but that it also greatly reduces the time of dynamic calculation.