ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Gabriele Ferrero, Samuele Meschini, Raffaella Testoni
Fusion Science and Technology | Volume 78 | Number 8 | November 2022 | Pages 617-630
Technical Paper | doi.org/10.1080/15361055.2022.2096365
Articles are hosted by Taylor and Francis Online.
The Affordable, Robust, Compact (ARC) fusion reactor is a preconceptual design proposed by the Plasma Science and Fusion Center at the Massachusetts Institute of Technology that will be developed by Commonwealth Fusion Systems. ARC features a Li2BeF4 (FLiBe) molten salt liquid blanket that provides reactor cooling, neutron shielding, and tritium breeding. This work aims to develop a preliminary coupled computational fluid dynamics (CFD) and tritium transport model to describe FLiBe flow inside the tank and to assess ARC tritium inventory in the vacuum vessel and blanket. Both models are built by taking advantage of COMSOL® Multiphysics. FLiBe velocity and temperature fields are evaluated by the CFD models, and they are passed as input to the tritium transport model. The tritium transport model computes tritium concentration inside solid materials and FLiBe. An auxiliary FLiBe inlet has been moved from the original position in the ARC preconceptual design to improve blanket cooling and to reduce the size of flow eddies. Results show that many recirculation zones generate inside the tank for the chosen tank geometry, size, and inlet-outlet conditions. Larger FLiBe temperature and tritium concentration are found in these zones. The high FLiBe temperature in recirculation areas may not allow for effective cooling, and Inconel 718 reaches critical temperatures. The largest tritium concentration for a steady-state model with continuity of tritium partial pressure at the interfaces is found in Inconel 718 while the second-highest concentration is reached in FLiBe. The total tritium inventory in the ARC blanket with the assumed model is quantified as 3.16 g.