ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Jianhang Zhou, Jinglong Zhang, Jie Zhang, Yipo Zhang, Hong Yang
Fusion Science and Technology | Volume 78 | Number 7 | October 2022 | Pages 588-594
Technical Note | doi.org/10.1080/15361055.2022.2090785
Articles are hosted by Taylor and Francis Online.
Neutron flux measurement provides essential data for the diagnostic tools that control plasma combustion, equipment maintenance, and radiation safety and reveals key information on plasma physics, machine protection, and control issues. To obtain rapid change of the neutron emission rate by magnetohydrodynamic instabilities, a fast neutron flux measurement system with high time resolution (~10 ) was developed on the HL-2M tokamak (located at Southwestern Institute of Physics, China). The system includes four EJ-410 detectors and four digitizers that we developed ourselves with dedicated field-programmable gate array firmware, including a waveform recording function, real-time count rate measurement, and real-time integration measurement. The simulation results show that the throughput rate of the readout electronics is 96.7% when the input counting rate is 1 mega count per second (Mcps) and the throughput rate could achieve 63.8% when the input counting rate is 6 Mcps. Moreover, when the input counting rate increases further to 10 Mcps, the integration model may be used. Given that this measurement system is highly portable and has a high time resolution, it is suitable for the fast neutron flux diagnostic on the HL-2A tokamak.