ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Masahiko Utsuro, Mitsuo Nakai, Hideki Kohri, Takeshi Ohta, Takumi Konno, Asako Igashira, Mamoru Fujiwara
Fusion Science and Technology | Volume 78 | Number 7 | October 2022 | Pages 513-527
Technical Paper | doi.org/10.1080/15361055.2022.2062098
Articles are hosted by Taylor and Francis Online.
A test experiment to polarize tritium nuclei to develop a polarized deuterium-tritium (D-T) laser fusion concept is proposed in which a ferromagnetic complex with a high internal magnetic field is used to polarize tritium nuclei on physisorbed D-T molecules with an internal β-decay heat load in a D-T target. Heteronuclear hydrogen deuteride (HD) is used to conduct the measurements herein instead of as in typical D-T–based experiments. As proof-of-concept experimentation, the adsorption and desorption characteristics of HD are examined on Prussian blue ferromagnetic analogue Ni3[Fe(CN)6]2 at temperatures of 77 K and around 23 K. Nuclear magnetic resonance (NMR) analysis of the ferromagnetic complex-mediated adsorption of HD onto activated carbon pellets at 10 K is conducted step by step using a multilocular probe cell that had been simplified to give a single-tube probe cell. The resulting 1H NMR spectra are compared with 19F NMR spectra obtained for reference on a Kel-F probe cell wall. Slight differences between the calculated NMR frequency from the gyromagnetic ratio and the actually observed NMR frequency are also discussed.