ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Masahiko Utsuro, Mitsuo Nakai, Hideki Kohri, Takeshi Ohta, Takumi Konno, Asako Igashira, Mamoru Fujiwara
Fusion Science and Technology | Volume 78 | Number 7 | October 2022 | Pages 513-527
Technical Paper | doi.org/10.1080/15361055.2022.2062098
Articles are hosted by Taylor and Francis Online.
A test experiment to polarize tritium nuclei to develop a polarized deuterium-tritium (D-T) laser fusion concept is proposed in which a ferromagnetic complex with a high internal magnetic field is used to polarize tritium nuclei on physisorbed D-T molecules with an internal β-decay heat load in a D-T target. Heteronuclear hydrogen deuteride (HD) is used to conduct the measurements herein instead of as in typical D-T–based experiments. As proof-of-concept experimentation, the adsorption and desorption characteristics of HD are examined on Prussian blue ferromagnetic analogue Ni3[Fe(CN)6]2 at temperatures of 77 K and around 23 K. Nuclear magnetic resonance (NMR) analysis of the ferromagnetic complex-mediated adsorption of HD onto activated carbon pellets at 10 K is conducted step by step using a multilocular probe cell that had been simplified to give a single-tube probe cell. The resulting 1H NMR spectra are compared with 19F NMR spectra obtained for reference on a Kel-F probe cell wall. Slight differences between the calculated NMR frequency from the gyromagnetic ratio and the actually observed NMR frequency are also discussed.