ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. Gormezano, P. Buratti, M. L. Apicella, E. Barbato, G. Bracco, A. Cardinali, C. Castaldo, R. Cesario, S. Cirant, F. Crisanti, M. de Benedetti, B. Esposito, D. Frigione, L. Gabellieri, E. Giovannozzi, G. Granucci, H. Kroegler, M. Leigheb, M. Marinucci, D. Pacella, L. Panaccione, V. Pericoli-Ridolfini, L. Pieroni, S. Podda, F. Romanelli, M. Romanelli, P. Smeulders, C. Sozzi, A. A. Tuccillo, O. Tudisco
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 303-322
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A516
Articles are hosted by Taylor and Francis Online.
The main physics results achieved in the recent years in the Frascati Tokamak Upgrade (FTU) are reviewed. The main focus of research has been the development of performance plasmas at high densities (up to 4 × 1020 m-3), high magnetic field (up to 8 T) and plasma current (up to 1.6 MA), that are therefore in a domain of relevance for burning physics experiments such as ITER. The main tools consist in the development of plasma conditioning techniques and the use of various electron heating and current drive systems. Improved confinement regimes have been developed, including (a) the production of steady electron internal transport barriers at high density and electron temperature (up to central electron temperature of 11 keV at a central density of 0.9 × 1020 m3), (b) the production of repetitive pellet enhanced plasma modes with deep pellet deposition leading to a substantial increase of the neutron yield (and a record FTU value of the fusion product niTiE up to 0.8 × 1020 m-3 keVs), and (c) the production of radiation improved modes at high magnetic field. Main results on the supporting physics program will also be given in the domain of plasma wave physics (lower hybrid current drive, electron cyclotron resonance frequency, ion Bernstein waves), heat and impurities transport, and magnetohydrodynamic studies.