ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Lingrui Li, Zijia Zhao, Yanyun Ma, Zhe Ma, Jiang Lai, Yunliang Zhu
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 475-489
Technical Paper | doi.org/10.1080/15361055.2022.2049121
Articles are hosted by Taylor and Francis Online.
With the development of magnetic confinement fusion (MCF), it has become feasible for fusion energy to solve the future energy crisis. High-energy neutrons are produced during the fusion reaction. Neutron shielding and the tritium breeding ratio in MCF require a neutron source of high precision. In traditional methods, the neutron source is supposed to be isotropic. However, the double-differential cross sections for nuclear fusion given in the ENDF/B-VI database make it possible to calculate the neutron direction distribution in deuterium-tritium (D-T) plasma. In this study, a Maxwellian reactivity rate database is obtained by extracting double-differential cross-section data from the ENDF/B-VI database and then revising it. Monte Carlo and discrete ordinate methods are used to simulate transportation and fusion in D-T plasma and obtain the angular distribution of the neutron generation rate. The results of a preliminary numerical simulation in a simple model tell us that the difference between anisotropy and isotropy can reach an average of 4.6%. A temperature-corrected double-differential cross-section database and a numerical simulation method are developed to calculate the angular distribution of the neutron generation rate.