ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
F. N. Si, F. X. Chen, D. Wang
Fusion Science and Technology | Volume 78 | Number 6 | August 2022 | Pages 468-474
Technical Paper | doi.org/10.1080/15361055.2022.2049120
Articles are hosted by Taylor and Francis Online.
A backlighting system is developed for Z-pinch experiments that is composed of a pulsed X-ray generator (the backlighter), a scintillator, an optical module, and an intensified charge-coupled device (ICCD). By optimizing the geometrical layout, choosing the appropriate scintillator, and optimizing the parameters of the optical module, the system is successfully designed. The key properties of the system are theoretically calculated based on parameters of the X-rays and the scintillator. Calculation results of sensitivity show that the amount of scintillator fluorescence falls in the linear dynamic range of the ICCD. Spatial resolution is calculated to be 241 µm, which is mainly determined by the geometrical layout and the size of the X-ray focal spot. Temporal resolution is calculated to be 2.3 ns, which is mainly determined by the decay time of the scintillator. Calculation results indicate that the properties of the system meet the requirements of the Z-pinch capsule diagnostics. The system has been fabricated. Performance of the system is tested through static W wire experiments in the laboratory. Experimental results show that 250-µm W wire is clearly seen in the image when X-ray fluence is high, while 100-µm W wire cannot be seen.