ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
J. Ongena, A. M. Messiaen
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 453-466
Technical Paper | Plasma and Fusion Energy Physics - Present Status and Future | doi.org/10.13182/FST04-A512
Articles are hosted by Taylor and Francis Online.
The total amount of heating power coupled to the plasma Ptot and the energy confinement time are determining parameters for realizing the plasma conditions suitable for the reactor. We recall that the ignition condition can be expressed by the following condition on the triple fusion product:NT = Ptot2/(3 Vol) = 3N2T2Vol/Ptot > (NT)ignition (1)with T [approximately equal to] 15 keVwhere = E/Ptot is the energy confinement time, E = 3NT Vol for an isothermal plasma with Ti = Te = T and a plasma volume Vol; N is the plasma density. The value T [approximately equal to] 15 keV corresponds to the minimum value of (NT)ignition as a function T (see Fig. 1). In the present discussion for the sake of simplicity, we neglect density and temperature profile factors. The heating power in most of the present experiments is given by Ptot = POH + Padd where POH is the ohmic power and Padd is the additional heating due to neutral beam injection or R.F. heating. At ignition, the additional heating power must come completely from the energetic particles produced by the fusion reactions and we must have Ptot = P if we neglect the residual POH and the plasma losses by Bremsstrahlung (PBr [is proportional to] N2 T1/2).