ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Bin Long, Ying Liu, Fulin Zeng, Jijun Zhou, Yuqian Yang
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 379-388
Technical Paper | doi.org/10.1080/15361055.2022.2033061
Articles are hosted by Taylor and Francis Online.
Edge-coherent mode (ECM) is one of the most promising modes in the tokamak fusion experiment, such as the Experimental Advanced Superconducting Tokamak (EAST). This paper presents an efficient convolution neural network model called NoiseNet for ECM recognition from the cross-power spectral data. NoiseNet suppresses the overfitting by applying noise in both the horizontal and vertical directions to the output of each layer of the convolution. And the improvement of the receptive field enables the convolution layer to better learn the difference between the ECM and the turbulence in the data. Experiments show that NoiseNet has better performance in ECM recognition with fewer parameters, and thus improved efficiency, than other major models, such as AlexNet, ResNet, and DenseNet. NoiseNet achieves a test accuracy of 93.94% on the ECM data sets. In addition, compared with the traditional method, this method does not depend on the empirical threshold and its generalization ability will improve with the increase in the amount of data.