ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Bin Long, Ying Liu, Fulin Zeng, Jijun Zhou, Yuqian Yang
Fusion Science and Technology | Volume 78 | Number 5 | July 2022 | Pages 379-388
Technical Paper | doi.org/10.1080/15361055.2022.2033061
Articles are hosted by Taylor and Francis Online.
Edge-coherent mode (ECM) is one of the most promising modes in the tokamak fusion experiment, such as the Experimental Advanced Superconducting Tokamak (EAST). This paper presents an efficient convolution neural network model called NoiseNet for ECM recognition from the cross-power spectral data. NoiseNet suppresses the overfitting by applying noise in both the horizontal and vertical directions to the output of each layer of the convolution. And the improvement of the receptive field enables the convolution layer to better learn the difference between the ECM and the turbulence in the data. Experiments show that NoiseNet has better performance in ECM recognition with fewer parameters, and thus improved efficiency, than other major models, such as AlexNet, ResNet, and DenseNet. NoiseNet achieves a test accuracy of 93.94% on the ECM data sets. In addition, compared with the traditional method, this method does not depend on the empirical threshold and its generalization ability will improve with the increase in the amount of data.