ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Y. Li, C. D. Hu, Y. Z. Zhao, Q. L. Cui, X. L. Shu, Y. H. Xie, W. Liu
Fusion Science and Technology | Volume 78 | Number 4 | May 2022 | Pages 330-339
Technical Paper | doi.org/10.1080/15361055.2021.1997044
Articles are hosted by Taylor and Francis Online.
The timing synchronization system (TSS) in a radio-frequency–driven negative ion–based neutral beam injection system (NNBIS) is an important part of a negative ion–based neutral beam injection control system. In order to ensure the orderly conduct of experiments and the integrity of experimental data, the TSS needs to complete the corresponding timing synchronization function. There are two aspects to control of the NNBIS: controlling the synchronization of NNBIS subsystems within a certain precision and ensuring correct timing and amplitude output during the experiment. This paper presents the design and development of the TSS in the NNBIS, aiming at the characteristics of the IEEE 1588-2019, “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,” clock synchronization protocol to achieve the demands of clock synchronization at a submicrosecond level, synchronously triggering other subsystems through the network trigger and hardware trigger. The TSS successfully implemented synchronization accuracy in less than 1 μs, and the network trigger is more efficient than the hardware trigger, which is about 80 μs faster. The TSS meets the requirements of timing synchronization accuracy of the NNBIS.