ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Luciano Ondir Freire, Delvonei Alves de Andrade
Fusion Science and Technology | Volume 78 | Number 4 | May 2022 | Pages 259-274
Technical Paper | doi.org/10.1080/15361055.2021.2000327
Articles are hosted by Taylor and Francis Online.
Scientists detected 2.45-MeV neutrons and in smaller yields 4- and 5-MeV neutrons in deuterated metals under a 2.9-MeV electron beam. Such discovery could allow the use of deuterated metals at temperatures below their melting point to provide nuclear fusion reactions. Such reactions could provide fast neutrons and energy in the form of heat. This work analyzed the results of some experiments to infer the neutron multiplication rate in such environments. It also considered the possible roles that such phenomena could play in a commercial nuclear power reactor under economic and compactness constraints. It seems the best way to promote nuclear fusion is the irradiation of deuterated metals by fast neutrons. This work presents the concept of a hybrid fusion–fission reactor using fissile or fertile fuel to generate heat and fast neutrons along deuterated metals providing excess neutrons (reactivity boost). Additionally, deuterated metals also may have a role in neutron moderation requiring less volume than other moderators (water or graphite). Such a reactor, given its reactivity boost, may burn radioactive residuals (transmutation) at affordable costs while generating power. Alternatively, this hybrid fusion–fission concept could also breed fissile fuel from fertile isotopes using natural uranium as seed.