ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Xin Xiao, Henry T. Sessions, Robert Rabun
Fusion Science and Technology | Volume 78 | Number 3 | April 2022 | Pages 253-257
Tecnical Paper | doi.org/10.1080/15361055.2021.1982331
Articles are hosted by Taylor and Francis Online.
Deuterium-tritium fusion is the easiest nuclear fusion reaction among known fusion reactions. Since tritium is extremely rare, it is artificially produced by irradiating lithium metal. The separation, isolation, and storage of the tritium isotope has been a major focus of the Savannah River Site (SRS) for many decades. Thermal diffusion, fractional absorption, and cryogenic distillation have all been used in the past, and each has significant operational and safety challenges. A process known as the Thermal Cycling Absorption Process (TCAP) was invented at SRS, and because of its overwhelming advantages in safety, efficiency, size, and reduced tritium inventory, it has replaced all other hydrogen isotope separation processes at SRS. The working principles and current development of hydrogen isotope separation using TCAP at SRS are explained as a potential advanced isotope separation process for the fusion fuel cycle.