ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Jianqing Cai, Huasheng Xie, Yang Li, Michel Tuszewski, Hongbin Zhou, Peipei Chen
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 149-163
Technical Paper | doi.org/10.1080/15361055.2021.1964309
Articles are hosted by Taylor and Francis Online.
Most tokamak devices including ITER exploit the deuterium-tritium reaction due to its high reactivity, but the wall loading caused by the associated 14-MeV neutrons will limit the further development of fusion performance at high beta. To explore the p-11B fusion cycle, a tokamak system code is extended to incorporate the relativistic bremsstrahlung since the temperature of electrons approaches the electron rest energy. By choosing an optimum p-11B mix and ion temperature, some representative sets of parameters of the p-11B tokamak reactor, whose fusion gain exceeds 1, have been found under the thermal wall loading limit and beta limit when synchrotron radiation loss is neglected. However, the fusion gain greatly decreases when the effect of synchrotron radiation loss is considered. Helium ash also plays an important role in the fusion performance, and we have found that the helium confinement time must be below the energy confinement time to keep the helium concentration ratio in an acceptable range.