ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
J. Seol, K. C. Shaing
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 111-118
Technical Paper | doi.org/10.1080/15361055.2021.1960090
Articles are hosted by Taylor and Francis Online.
Since the magnetic field strength is not constant on the magnetic flux surface, the flow also varies so that the density compression occurs along the poloidal direction. Since the inhomogeneous flow causes the density compression in the poloidal direction, the parallel flow is also perturbed. In this study, we investigate the effects of the parallel flow perturbation on the geodesic acoustic mode (GAM) when it is described by the kinetic approach. Using the continuity equation, it is shown that the flow perturbation in the geodesic curvature direction is balanced by the lowest-order term of the density perturbation in , and the flow perturbation in the parallel direction is balanced by the higher-order terms of the density perturbation. Since the density perturbation includes both the perpendicular and parallel flow perturbation contributions, the GAM frequency obtained by the kinetic approach has the parallel flow perturbation contribution, which is 1/ term in the GAM frequency equation. The low frequency branch of the dispersion relation is also discussed to demonstrate the connection between the GAM theory and neoclassical theory for the first time. It is shown that the flow perturbation in the geodesic curvature direction is balanced mostly by the parallel flow perturbation. It means that the flow in the flux surface is divergence free approximately as in the usual transport ordering. Thus, the poloidal flow goes to the neoclassical flow when the low frequency branch is taken.