ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
J. Seol, K. C. Shaing
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 111-118
Technical Paper | doi.org/10.1080/15361055.2021.1960090
Articles are hosted by Taylor and Francis Online.
Since the magnetic field strength is not constant on the magnetic flux surface, the flow also varies so that the density compression occurs along the poloidal direction. Since the inhomogeneous flow causes the density compression in the poloidal direction, the parallel flow is also perturbed. In this study, we investigate the effects of the parallel flow perturbation on the geodesic acoustic mode (GAM) when it is described by the kinetic approach. Using the continuity equation, it is shown that the flow perturbation in the geodesic curvature direction is balanced by the lowest-order term of the density perturbation in , and the flow perturbation in the parallel direction is balanced by the higher-order terms of the density perturbation. Since the density perturbation includes both the perpendicular and parallel flow perturbation contributions, the GAM frequency obtained by the kinetic approach has the parallel flow perturbation contribution, which is 1/ term in the GAM frequency equation. The low frequency branch of the dispersion relation is also discussed to demonstrate the connection between the GAM theory and neoclassical theory for the first time. It is shown that the flow perturbation in the geodesic curvature direction is balanced mostly by the parallel flow perturbation. It means that the flow in the flux surface is divergence free approximately as in the usual transport ordering. Thus, the poloidal flow goes to the neoclassical flow when the low frequency branch is taken.