ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Dingqing Guo, Chao Chen, Zhen Wang, Jian Lin, Bing Zhang, Daochuan Ge, Zhibin Chen
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 103-110
Technical Paper | doi.org/10.1080/15361055.2021.1960089
Articles are hosted by Taylor and Francis Online.
The fusion reactor fueled by deuterium and tritium will generate many neutron activation products, causing occupational exposure and radiation risk. The minimization of occupational radiation exposure (ORE) is one of the safety goals for fusion reactors. However, detailed designs and management schemes are still lacking for fusion reactors, and the ORE evaluations are still well simplified. In this paper, an integrated assessment approach is proposed for fusion reactors at the conceptual or detailed design stage. The core idea is to estimate the ORE by referring to the dose rates and work efforts of mature fission reactors and ITER and modifying the data of these similar systems by a proportional coefficient according to the differences of component scale, operating environment, etc. The results showed that water cooling fusion reactors will generate the highest collective dose of 2635 p-mSv/year, while the PbLi cooling ones come next with about 1684 p-mSv/year and the helium cooling ones are the least. This method will contribute to fusion reactor design, operation, and maintenance optimization at the earlier stages and provide guidance to reduce the overall potential ORE to workers.