ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Li Jiang, Ge Gao, Zhengyi Huang, Jie Zhang, Peng Wu, Xuesong Xu
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 96-102
Technical Paper | doi.org/10.1080/15361055.2021.1957369
Articles are hosted by Taylor and Francis Online.
According to the ITER requirement, the availability of the poloidal field (PF) coil power supply system must be 98.3% during the life cycle of ITER. In order to meet this requirement, Reliability, Availability, Maintainability, and Inspectability (RAMI) analysis has been applied for analyzing the availability and reliability of the PF power supply system. First, the function analyses, which are described using the Integration Definition Function–language Ø or IDEFØ model are performed. Second, the failure mode effect and criticality analyses are used to calculate the risk level, present the potential causes and effects, and provide the risk mitigation actions to reduce the risk level for each failure. Third, the reliability block diagram is built to simulate the availability and reliability of the system. RAMI analysis provides a method that can be followed to improve the availability and reliability of the system, and from the results, the design requirement can be satisfied.