ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
EPRI’s new program aims to strengthen grid resilience
The Electric Power Research Institute has launched a global initiative to prepare future grids by modernizing how the electricity-generating sector detects, anticipates, and responds to emerging risks and manages technological transformation. The nonprofit energy research and development organization intends for the initiative, called Rapid Adaptation of Grid Defense, Analytics, and Resilience (RADAR), to provide a scalable framework, advanced tools, and targeted training for strengthening grid resilience and reliability.
A. Terakado, Y. Koide, M. Yoshida, T. Nakano, H. Homma, N. Oyama
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 89-95
Technical Paper | doi.org/10.1080/15361055.2021.1951529
Articles are hosted by Taylor and Francis Online.
Heat-resistant in-vessel components, i.e., a heat sink, a front-end optics housing, and a diagnostic window have been designed in terms of heat-handling capability and thermal stress and mechanical stress by using a finite element method code. The heat sink, which is exposed to a plasma heat flux of up to 0.3 MW/m2, consists of carbon tiles, a carbon sheet, and a stainless steel heat sink with a water-cooling channel. Analysis shows that at a water flow rate of 0.9 kg/s with a water pressure of 0.5 MPa, an increase in the carbon tile temperature is mitigated below the limit related with detrimental red-hot (900°C). The front-end optics housing temperature and the diagnostic window of sapphire glass temperature are within the allowable temperature. The thermal stress and mechanical stress are less than the allowable value, respectively.