ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
V. Dutto, A. Choux, F. C. Chittaro, É. Busvelle, J.-P. Gauthier
Fusion Science and Technology | Volume 78 | Number 1 | January 2022 | Pages 28-43
Technical Paper | doi.org/10.1080/15361055.2021.1951530
Articles are hosted by Taylor and Francis Online.
This paper presents the development of a radiographic characterization method for microshells. In the Laser MegaJoule (LMJ) framework, microshells are tiny plastic spheres used in inertial fusion laser experiments. For this work, these microshells were characterized using low-energy radiography. In the microshell radiographs, phase contrast was noted at the edges of the microshells. The origin of this phenomenon has been identified as sharp variation of gray-scale amplitude due to refraction. Our theoretical model links pixel information with microshell geometry and is used for contour detection and characterization. Finally, an estimation of surface defects described by spherical harmonics is calculated.