ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Nathan Clark Reid, Lauren Garrison, Maxim Gussev, Jean Paul Allain
Fusion Science and Technology | Volume 77 | Number 7 | October-November 2021 | Pages 907-914
Student Paper Competition Selection | doi.org/10.1080/15361055.2021.1925032
Articles are hosted by Taylor and Francis Online.
Candidate tungsten armor materials in a magnetic confinement fusion device must be able to withstand thermal variation that leads to internal stresses caused by the impinging heat load. In addition, the thermomechanical properties of these materials are degraded by irradiation-induced defect accumulation. Fission reactor–based irradiation data are used to predict the fusion neutron damage and property change. This study examines the motivation and design of a custom-designed three-point bend test for neutron-irradiated disk specimens that are 3 mm in diameter to be able to define the flexural strength of advanced tungsten materials, alloys, and composites—and to the extent that embrittlement occurs after neutron irradiation. The theory provided shows a calculation for the flexural deflection and shear deflection due to the small-geometry constraints. A finite element deformation analysis is performed to evaluate the mechanical stress field of disk bend specimens. The stress values above 80% of the maximum stress are concentrated in 2.4 mm of the 3.0-mm length of the centerline across the tungsten disk diameter. A bend test fixture has been designed and fabricated to enable testing of these specimens with precisely engineered tolerance and minimal machine compliance. This fixture will be able to be placed inside a universal testing frame at elevated temperatures for the mechanical property evaluation of future neutron-irradiated disk specimens.