ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Monica Gehrig, Joshua Schlegel, Dennis Youchison, Arnold Lumsdaine, Charles Kessel, Gary Mueller
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 883-893
Student Paper Competition Selection | doi.org/10.1080/15361055.2021.1887717
Articles are hosted by Taylor and Francis Online.
A helium flow loop is being assembled at Oak Ridge National Laboratory to analyze heat transfer enhancement for systems such as blanket and divertor components. To efficiently identify optimum geometries for heat transfer enhancement in these applications, simulation work is performed to optimize test section designs that are built and tested in the helium flow loop that operates at 4 MPa and a mass flow rate of 100 g/s. Different ribbed geometries that examine rib shape, rib height, rib orientation, rib spacing, and three-dimensional orientation are modeled and simulated in STAR-CCM+ to compare their ability to remove heat and mitigate pressure drop. Following the simulations, models are selected and manufactured for the helium flow loop tests. Simulations initially focus on a hydrodynamic study to determine the appropriate mesh and physics models and then add a heat flux to analyze the heat transfer abilities of the models. The simulations are run in steady state and use a Reynolds-averaged Navier-Stokes k-ε turbulence model. The helium is modeled as an ideal gas. The simulation explores models of geometries that enhance the heat transfer and decrease pressure drop with an overall goal of increasing fluid collision with the wall. Enhanced geometries are simulated to select appropriate designs for manufacturing, and preliminary experimental results are used to validate the simulations. The factors that are being analyzed in the comparison between the experimental and the simulated results include matching thermocouple temperatures, pressure drop, roughness, and fluid velocity.